SURFACE SCIENCE STUDIES OF Li AND C03O4(111) THIN FILMS

Thomas Haunold, Christoph Rameshan, Günther Rupprechter

E165 Institute of Materials Chemistry

INTRODUCTION

Over the past decades, cobalt oxides have served as inexpensive key materials for many applications. These range from heterogeneous catalysis of important oxidizing reactions (e.g. low-temperature CO oxidation^[1, 2], preferential oxidation of CO (PROX)^[3-5], Ostwald synthesis of nitric acid by oxidation of ammonia^[6], and oxidation of hydrocarbons^[1, 7]), to the Fischer-Tropsch synthesis of hydrocarbons and liquid fuels^[8], and the conversion of volatile organic compounds $(VCOs)^{[9]}$. Recently, Co₃O₄ has also been investigated as potential anode material for Li ion batteries (LIBs)^[10, 11], featuring high theoretical discharge capacities. However, the formation of a solid electrolyte interface (SEI) competes with reversible Li⁺ ion intercalation and thus reduces the capacity of LIBs^[12]. A similar behavior is observed in solid-state batteries where metallic Li anodes are used.

EXPERIMENTAL

The most effective approach to explain and improve the functionality of cobalt oxides is to conduct experiments at a microscopic or even atomic level. This can be achieved by preparation and study of model-systems. Therefore, Co_3O_4 and Li thin films were prepared by physical vapor deposition (PVD) under ultrahigh vacuum (UHV) conditions. Film growth was monitored visually in real-time using low energy electron microscopy (LEEM). Afterwards, thin film characterization was carried out by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and temperature-programmed desorption (TPD).

RESULTS AND CONCLUSION

The catalytic activity of $Co_3O_4(111)$ thin films was investigated under working conditions using CO oxidation as test reaction. Experiments were performed within a flow reactor supplying a stoichiometric mixture of reactants (CO:O₂ = 2:1) at mbar pressure while the catalyst was heated stepwise over a wide temperature range. Product (CO₂) formation was observed *via* mass spectrometer (MS), starting at roughly 200 °C, which agrees well with previous results reported in the literature^[13]. Regardless of morphology (cobalt oxide thin films, powders, nanorods), the stability of the Co₃O₄ phase, particularly the presence of Co³⁺ at the surface, defines the temperature window of catalytic activity. Moisture (even trace amounts) in the feed led to a decrease of CO conversion due to water dissociation (formation of hydroxyl groups) and blocking of active sites. However, this deactivation process is reversible upon heating to higher temperatures.

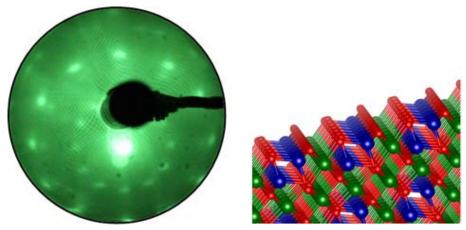


Figure 1: LEED pattern of $Co_3O_4(111)$ (left) and surface structure (right; red: O^{2-} , blue: Co^{2+} and green: Co^{3+})

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund (FWF) through the international DACH program I 1041-N28 (COMCAT) and project SFB FOXSI (F4502-N16).

REFERENCES

- [1] Y. F. Y. Yao, Journal of Catalysis 33.1, (1974) 108-122
- [2] X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen, W., Nature: 458, (2009) 746-749
- [3] G. Marbán, I. López, T. Valdés-Solís, A. B. Fuertes, International Journal of Hydrogen Energy 33(22), (2008) 6687-6695
- [4] L. Lukashuk, K. Föttinger, E. Kolar, C. Rameshan, D. Teschner, M. Hävecker, A. Knop-Gericke, N. Yigit, H. Li, E. McDermott, M. Stöger-Pollach, G. Rupprechter, *Journal of Catalysis 344*, (2016) 1-15
- [5] L. Lukashuk, N. Yigit, R. Rameshan, E. Kolar, D. Teschner, M. Hävecker, A. Knop-Gericke, R. Schlögl, K. Föttinger, G. Rupprechter, ACS Catal 8(9), (2018), 8630-8641
- [6] K. Shojaee, B. S. Haynes, A. Montoya, Applied Surface Science 316, (2014) 355-365
- [7] Z. Tian, N. Bahlawane, F. Qi, K. Kohse-Höinghaus, Catalysis Communications 11(2), (2009) 118
- [8] H. Oosterbeek, Physical Chemistry Chemical Physics 9(27), (2007) 3570-3576.
- [9] T. Garcia, S. Agouram, J. F. Sanchez-Royo, R. Murillo, A. M. Mastral, A. Aranda, I. Vazquez, A. Dejoz, B. Solsona, *Applied Catalysis a-General 386* (1-2), (2010) 16-27
- [10] H. C: Liu, S. K. Yen, Journal of Power Sources 166(2), (2007) 478-484
- [11] Y. Dou, J. Xu, B. Ruan, Q. Liu, Y. Pan, Z. Sun, S. X. Dou, Advanced Energy Materials 6(8), (2016) 1501835
- [12] M. B. Pinson, M. Z. Bazant, Journal of the Electrochemical Society 160(2), (2013) A243-A250
- [13] Jansson, J.; Palmqvist, A. E. C.; Fridell, E.; Skoglundh, M.; Osterlund, L.; Thormahlen, P.; Langer, V., On the catalytic activity of Co3O4 in low-temperature CO oxidation. *Journal of Catalysis*, 211(2), (2002), 387-397